分类 Share 下的文章

15、Dropout原理以及Torch源码的实现


NN.DROPOUTCLASStorch.nn.Dropout(p=0.5, inplace=False)Parametersp (float) – probability of an element to be zeroed. Default: 0.5inplace (bool) – If set to True, will do this operation in-place. Default: FalseShape:Input: (∗)(∗). Input can be of any shapeOutput: (∗)(∗). Output is of the same shape as inputm = nn.Dropout(p=0.2) input = torch.randn(20, 16) output = m(input)如何判断当前是否为Trai...

9、PyTorch的nn.Sequential及ModuleList源码


train# 实例化一个模型,在模型后调用.train(True),说明我们将该模型设置为训练模式 def train(self: T, mode: bool = True) -> T: r"""Sets the module in training mode. This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`, etc...

8、PyTorch的state_dict、parameters、modules源码


Save and Load the ModelPyTorch models store the learned parameters in an internal state dictionary, called state_dict. These can be persisted via the torch.save method:model = models.vgg16(weights='IMAGENET1K_V1') # 保存模型的参数、优化器状态、batch_nomalization、drop_out等等一系列的buffer变量 # model.state_dict() 只保留模型的权重 torch.save(model.state_dict(), 'model_weights.pth') # 每个model都会包含一个state_dict()状态字典...

24、手写并验证向量内积实现PyTorch二维卷积


该9步过程可以看作是一个矩阵跟另外一个矩阵的矩阵相乘将每步input拉直,例如左上角第一个深蓝色区域拉为332001312行向量,再将Kernel拉为$(012220012)^T$列向量相乘得到第一个最终结果的左上角第一个数值12.0So,上边九步运算可以视为行数为9的矩阵和列数为9的矩阵进行矩阵乘法,再将相乘的结果reshape为欲得到的结果Other Method实现一个长度为25的内积目前Kernel只是3×3的范围大小,若是将Kernel填充一下,eg.左上角第一幅图,Kernel只有9个数,但是我们可以脑补一下浅蓝色部分都填充为0,每一步都将Kernel填充浅蓝色部分为0,那么,原问题就变为25行向量和25列向量相乘。Coding希望把region_vector都放入到region_matrix中,再将region_matrix与Kernel_mat...

召唤看板娘