分类 Share 下的文章

23、手写并验证滑动相乘实现PyTorch二维卷积


蓝色的input_feature 5*5深蓝色小字部分kernel_size 3*3绿色部分out_feature 3*3stride = 1padding = 0channel = 1padding = 1stride = 2底部input_channels = 2顶端绿色为out_channels = 3kernels = 2*3 = 6(倒数第二行)input = input_feature_map # 卷积输入特征图 kernel = conv_layer.weight.data # 卷积核 input = torch.randn(5, 5) # 卷积输入特征图 kernel = torch.randn(3, 3) # 卷积核 bias = torch.randn(1) # 卷积偏置项,默认输出通道数目=1 # Func1 用原始的矩阵运算...

22、Pytorch nn.Conv2d


22、Pytorch nn.Conv2dCLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)[ ](https://pytorch.org/docs/stable/_modules/torch/nn/modules/conv.html#Conv2d)torch import torch.nn as nn import torch.nn.functional as F conv_layer = nn.Conv2d(in_channels=1, out_channels=1, kernel_s...

Module


MODULECLASStorch.nn.Module(args, kwargs*)[SOURCE]层、模型的父类Base class for all neural network modules.Your models should also subclass this class.Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): ...

Pytorch 分类网络实例


TransformsData does not always come in its final processed form that is required for training machine learning algorithms. We use transforms to perform some manipulation of the data and make it suitable for training.All TorchVision datasets have two parameters -transform to modify the features and target_transform to modify the labels - that accept callables containing the transform...

召唤看板娘