分类 Python 下的文章

15、Dropout原理以及Torch源码的实现


NN.DROPOUTCLASStorch.nn.Dropout(p=0.5, inplace=False)Parametersp (float) – probability of an element to be zeroed. Default: 0.5inplace (bool) – If set to True, will do this operation in-place. Default: FalseShape:Input: (∗)(∗). Input can be of any shapeOutput: (∗)(∗). Output is of the same shape as inputm = nn.Dropout(p=0.2) input = torch.randn(20, 16) output = m(input)如何判断当前是否为Trai...

9、PyTorch的nn.Sequential及ModuleList源码


train# 实例化一个模型,在模型后调用.train(True),说明我们将该模型设置为训练模式 def train(self: T, mode: bool = True) -> T: r"""Sets the module in training mode. This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`, etc...

8、PyTorch的state_dict、parameters、modules源码


Save and Load the ModelPyTorch models store the learned parameters in an internal state dictionary, called state_dict. These can be persisted via the torch.save method:model = models.vgg16(weights='IMAGENET1K_V1') # 保存模型的参数、优化器状态、batch_nomalization、drop_out等等一系列的buffer变量 # model.state_dict() 只保留模型的权重 torch.save(model.state_dict(), 'model_weights.pth') # 每个model都会包含一个state_dict()状态字典...

召唤看板娘